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Abstract-The paper describes a theoretical investigation of longitudinal, developed laminar flow in an 
infinite square array of circular cylinders. the array being bounded on one side by a wall, parallel to the 
cylinder axes. The influence of the array pitch (2b) and the distance of the wall from the first row of cylinders 
(b,) on the flow rate of the medium through the individual cells of the array is studied and the mutual 
influence of the flow rate in individual cells one upon the others is investigated. The quantity b has been 
varied in the range from 1.5 R to 2.5 R (R being the cylinder radius) and the distance from the wall has been 
varied from b, = h (the first cell being square) to such values of h,. where the ratio of hydraulic diameters 
of the first cell and a cell within the lattice (5 = d,,‘di) reaches a value of 1.3. From the calculation it follows 
that the mutual influence of the individual cells is relatively small. Variations of the flow rate in the first 
two rows of cells reach a value of 1 per cent only for relatively large pitches (b > 2.5 R) and for cases, 
where the first cell differs greatly in the hydraulic diameter from the cells inside the array (5 > 1.3 and 

5 < 0.6). The influence of the third row of cells is negligible in the range of parameters considered. 
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NOMENCLATURE 

radius vector [m] ; 
azimuth angle [rad] ; 
cylinder radius [m] ; 
dimensionless radius vector, p = 

rlR ; 
array pitch [m] ; 
dimensionless array pitch, s = b/R ; 
distance of the wall from the first 
row of cells [m] ; 
dimensionless distance of the wall 
from the first row of cells, s1 = 

WR; 
dimensionless hydraulic diameter 
of a cell within the array according 
to relation (34); 
dimensionless hydraulic diameter 
of the first cell according to rela- 
tion (33); 
velocity of the liquid [m/s] ; 
dimensionless velocity according 
to relation (2); 
dimensionless volume flow rate 
according to relation (30) ; 
ratio of hydraulic diameters, 5 = 
dildi; 

ratio of dimensionless volume flow 
rates, q = G/G1 or r] = G/Gi; 
total number of considered cells ; 
number of the cell. 

1. INTRODUCTION 

IN THERMAL calculations of heat exchangers and 
in some types of nuclear reactor fuel elements 
we find the problem of determining the flow 
rate of the medium for the case of longitudinal 
flow in a bundle of tubes (or rods). 

In actual calculations, the procedure gener- 
ally applied is to divide the bundle into a 
number of “cells” more or less by estimation 
(see Fig. 1, the shaded area). The cell thus 
selected is considered to be “isolated” from 
the other cells, i.e. we assume that the flow of 
the medium through this cell is not influenced 
by the neighbouring cells. Based on the hydraulic 
diameter of this cell, and on other quantities 
(pressure gradients, etc.) the flow rate of the 
medium through the cell considered is calculated. 
In the case of a regular and infinite array, the 
procedure described above is certainly correct. 
If, however, the bundle is limited by a fixed wall, 
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(t)J 
FIG. I. Scheme of a heat exchanger or fuel 

element. 

such a method may be assumed to be only an 
approximation. 

The object of this paper is to determine the 
number of cell rows which will be influenced 
by the wall, from the point of view of the flow 

rate of the medium through these cells. To 
illustrate the influence of the wall on flow in the 

rod bundle, the laminar flow of a liquid through 
a bundle of rods is solved in this paper in the 
“semi-infinite geometry”, limited by a fixed 
wall. The rods are arranged in a square array 
with constant pitch. 

2. BOUNDARY CONDlTIONS 

To solve the problem, we divide the cross- 
section of the bundle into elementary cells 
(Fig. 2). In the case given, where we shall heve 

FIG 2. Schematic illustration of the problem studied. 

regard to the mutual influence of the cells, it is 

virtually immaterial how we select the cells. 
.4 typical cell is shown in Fig, 3. 

We shall proceed to solve the problem by 

determining an expression for the velocity 

field in the vicinity of every circular cylinder (i.e. 
in every cell), and using boundary conditions 
for the boundary of individual cells we shall 

match (sew together) these partial velocity 
fields. 

Since the array is semi-infinite, the solution is 

symmetrical with respect to x-axis (see Fig. 2). 
It is therefore sufficient to investigate one row 

of cells, shown in Fig. 2 by the shaded area. 
Because in the calculation we can only consider 
a finite number of cells, we shall limit the last 

cell by the boundary condition in the form of 
(?M.,/8XI,=h = 0. 

We are therefore going to study the problem 

as it is shown in Fig. l(b). We shall gradually 

increase the number of cells, until the results 
for the first cells vary no more. 

The longitudinal laminar flow parallel to 

the z-axis is described by a partial differential 
equation in the form of* 

dp pv%v: = y_. (II 

where ~1 is the dynamic viscosity and dpid: 

* In the given example. two Navier -Stokes equations are 
eliminated (w, = 0, M’, = 0) and the third is reduced to rhe 
Poisson equation. 
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the pressure gradient. By means of the substitu- relation holds : 
tion 

W(1, qf = 0. (6) 

P = f (2) Based on the series (5) we obtain the following 
relations for the integration constants : 

we transform equation (1) into the dimensionless 
form 

A, = $ 

VW = - 1. 
A,= -B, (n = 1,2,3,. . .). 

(3) 
Therefore, the exnression for the dimensionless 

In our case equation (3) has the form velocity will take the form 

aZw+iaw I j._a2w 
ap2 

1 

P @JP 
p2a402=- . (4) 

The solution of this partial differential equation 
takes the form 

W = & -t & ln P - V/4) f n$l R.&p” 

+ E&p-“) cos ncp + (C,p” + D,p-“) sin n(p]. 

(5) 

Since the problem is symmetrical with respect 
to the x-axis, the part of the solution which 
contains the sin ncp functions is eliminated. 

b2Y 
mh I -. x.- 

1 5 s J 
FIG. 3. Notation of the cell dimensions and location of 

boundary points. 

One half of the remaining integration constants 
may be eliminated due to the boundary condi- 
tion for the radius r = R, i.e. p = 1, where the 

Wfp, 94 = $1 - p2) + B. In p 
m 

+ c B”(f - p-y cos nql. (7) 
II=1 

2.1. Boundary conditions for the cell 
In the given case, where the solution of 

equation (3) is described in polar coordinates 
p, cp, the boundary condition of the form (6) 
is satisfied exactly along the whole circumference 
of the circle p = 1. The situation is somewhat 
different on the boundary of a cell of rectangular 
or square shape. Papers [l, 23 point out that 
the boundary conditions on the cell surface 
cannot be satisfied precisely for the case of a 
finite number of terms of the expansion. It 
can, however, be required that the boundary 
conditions be satisfied in selected points of the 
cell boundary. 

The dimensions of a cell and the distribution 
of boundary points along the circumference is 
shown in Fig. 3. For the dimension S, the rela- 
tion holds : 

s = SI for the first cell 

S=S for the other cells of the bundle. 

In the interval 0 < y < s we locate N, points 
distributed regularly, and in the interval - s < 
x < 0 and 0 < x < s we locate N, points. Let 
us give the boundary conditions for typical 
cells, and determine the dependence between 
the selected number of points N, and N, and 
the number of terms of the expansion N, (7). 

On the boundary x = f s of the individual 
cells, the condition of continui?y of the velocity 
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W and the velocity gradient must be satisfied. i.e. 

wjlx=5 = wj+ 1 lx= -_s for the points 1,2,. . ., N,,j = 1,2,. . ., f - 1; (84 

aw, aWj+ 1 
=------- 

ax x=F ax x=--s 
for the points 1,2,. . ., N,,j = 1,2,. . .,.I - 1; @b) 

2 awj+l 
= --- 

dy x=s ay _ 

for the points 2,3,. , ., N, - 1,j = 1,2,. . .,J - 1; (84 

where J is the total number of cells considered. 
For point No. 1 the condition (SC) is already satisfied, due to the symmetry of the solution with 

respect to the x-axis. 
On the boundary y = s, as a consequence of the symmetry of the solution (around the X-axis, 

Fig. 2) the following boundary condition holds 

aw, 
?v Y=,$ = 

0 for the points 1,2,. . ., 2N, - 1,j = 1,2,. ..,.I. 

For the left boundary (x = - S) of the first cell, 

W,/_r = 0 for points 1,2,. . ., N,, 

aw, -- 
ay &= 

0 for points 2,3, . . ., N1 - 1. 

(9) 

(loa) 

(lob) 

On the right boundary (x = s) of the last cell (denoted J) it is possible, as already mentioned, to 
write the condition 

aWj 

ax *=s = 
0 for points 1,2,. . ., N,. (11) 

The total number of boundary conditions 2.2. Ex~r~ss~~ns for the v&city W und its 
for J cells is given by the relation derivates 

I< = J(3N, + 2N, - 3). (12) 

Therefore, from expression (12) it follows that 
in every cell we must select 

N, =3N, +2N, -3 (13) 

terms in the expansion of form (7). 
The boundary conditions for a single cell 

are given by conditions (9), (lOa), (lob), (I I). 
The total number of conditions agrees with the 
given value of N,. 

The series (7) for the dimensionless velocity 
may be re-written in the form 

N) - 1 

where 

W = b + 1 &a,, 
II=0 

(14) 

b = $(l - p2) 

cs, = lnp (15) 
a, = Xn cos ncp (n = 1,2,...,N, - 1) 

Xn = p” - p-“. (16) 
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We obtain the expressions for the derivates and where 
awlax and aW/ay by substituting for aW/ap 

ml/ 
and a Wjacp into the expressions a, = IJ COs nq, 

P 

aw aw law. 
z =Fcosq -p5smq, 

aw aw 1i;w -=- 
ay ap 

sincp + --coscp. 
P acp 

It can be deduced, that 

Nj-1 

g = d + 
c 

B,c,, 

n=O 

Ns- 1 

aw 
ay=g+ c &fin, 

n=O 

where 

d = -$cosq, g = - +psincp, 

1 1 
co = -cos cp, 

P 
f. = - sin q, 

P 

c, = a, cos cp + PI1 sin rp 

f, = GI, sin cp - 8, cos cp 
n = 42,. . ., N, - 

Mj = I 

/?, = F sin ncp, 

*, = P” + P-“9 

X” = p” - p-“. 

2.3. Thejnal notation of the boundary conditions 
It has been found by analysis of the boundary 

conditions and evaluation of the partial numeri- 
cal results, that the boundary conditions (8c), 

(17) (lob) in the form of 

aw 

ay = 
0 for the points 2,3,. . ., N, - 1 

xfs 

(18) 
have little influence on the solution. They have 
therefore been left out of the calculation. For 
the total number of terms of the expansion (7) 
we obtain the expression : 

1, 

N3 = 2(N, + NJ - 1. (20) 

For the sake of clarity and the possibility of 
easier programming for a digital computer 
we now rewrite the boundary conditions in 
the matrix form. 

We introduce the matrixes Mj and ~j+, and 

(19) vectors Bj, Cj and ej+ 1 in the form of 

, all, a12,. . ., alK 

azo3 a21, a22?..., a2K 

. . . . ..,.... * 

UN,09 aNI1y aN12?. . .? aNIK 

Cl03 Cl19 c12,. . ‘9 ClK 

c20, c21, c22,. * ., C2K 

. . . . . . . . . . . . . . . . 

.c.WIO? cN,l~ CN,21..., CN,K _ 

Eij+l = , all, a12r. .., alK 

azoT a213 a22,. . -? a2K 

. . . . . . . . . . . . . . . 

aNIO, UN,17 aN129.. .) aNIK 

clot cll, c12,..v ClK 

c20, CZI, c22~~~~~ C2K 

. . . . . . . . . . . . . . . . 

.cN,O~ cN,l, cN,2~..~, CN,K _ 

(21) 
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Bj = Bb” 

Bl 

B2 

B k. 

Cj = -b:” 

b, 

iv, 

cj+l = (22) 

where K = N, - 1. Indexes j and j + 1 in the matrixes and vectors have been left out .for simplicity. 
Now we are able to write the conditions on the boundary of two cells in a simple matrix form 

MjBj + Cj = Mj+l Bj+l + ~j+l. 

The boundary conditions (9), (10a) and (11) we write in similar form 

AjBj + Dj = 0, 

N, B, + F, = 0, 

NJ BJ + FJ - 0, 

where 

3 N, = 
NJ= C$. Cll,..., ClK 

c2-J. $1,. . ., C2K 

. . . . . . . . . . . 

('N,O, CN,,,'..,CNIK 

9 
) 

(23) 

(24) 

(25) 

(26) 

all,..., alK . (27) 

a2oY a31,. . ., aZK 

. . . . . . . . . . . 

aNIOp aNllr...? aNIK 1 

F, = b’,” 7 FJ = 

b, 

bi, ‘1 
and where L = 2Nz - 1 

3. SOLUTION OF THE BOUNDARY PROBLEM 

9 (28) 

The system of equations, describing the boundary conditions for J cells may be written summarily 
thus : 

MB=F, (29) 
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where 

B= M= ‘Nl F= -F, - 

Al -D1 

m, -R, 7J2 - Cl 

A2 -D2 

M2, -M3 c, - c2 

A3 -D, 

MJ- 1, MJ c, ‘_ CJ- 

A, -D, 

N J. 4.l 

By solving the system of equations, represented by equation (29) we obtain directly all the integration 
constants. 

4. DETERMINATION OF THE FLOW RATE THROUGH A CEJ.L 

Based on the known integration constants we are able to determine the velocity field in a cell by 
means of equation (7). The volume flow rate of the medium through a cell is given by the integral 
(see Fig. 3) 

G = 2j{Wp,cp)pdpdyl, (30) 
01 

where 

I Lfornf4 < cp < $2; 
sin rp 

(31b) 

fi= 

A-- for ~12 < cp < ~12 + arctan S/s ; 
sin cp 

i - 
- s for x/2 + arctan S/s < cp < 72. 

cos cp 

(3lc) 

(314 

The integration with respect to the variable p A,@) = $ p2 (2 In p - 1) 
may be carried out analytically. For the volume 
flow rate we obtain a simple integral in the form 

A,(p) = +(j? - p i- 2) 

G = 2 i [A,(p) + “y ’ B, A,@) cos ncp] dq, (32) 
A,(p) = 4 ($” - In p - 1) 

-II+2 
n=O 

4(P) = p 

- 1 p-n+2 _ 1 

where n+2 - -n+2 

A,@) = &(2j? - p4) (n = 3,4,. . .) iv3 - 1). 

30 
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The integral (31) has been evaluated numerically 
by the trapezoidal rule. 

5. RESULTS OF THE CALCULATION 

The dimensionless pitch selected for this 
calculation was in the range of s = 150, 
1.75, 2.00,2.25, 2.50. Lower values of s were not 
considered, since for s = 1.5 the influence of 
the wall on the second cell row is already 
negligible. Values larger than s = 2.5 will 
hardly occur in practice. The wall distance has 
been varied from si = s (the first cell is square) 
to a value corresponding to the 1.3 times of the 
hydraulic diameter of the cell in the bundle. 

The calculation has been carried out for 
thirteen boundary points (N, = N, = 4). Then 
according to (20) we obtain for a number of 
terms in the expansion N3 a value of 15. In the 
numerical integration of expression (32) twenty 
mesh points have been selected in the individual 
sections (31). 

Figures 4 and 5 show the volume flow rates 
in non-influenced cells. Figure 4 illustrates the 
flow rate G, through the first cell as a function 
of the dimensionless pitch and the distance of 
the fixed wall from the axes of the first row of 
cylinders si. In the figure a line is also plotted, 
corresponding to the case where the first cell 
is square (si = s), and the line, which corres- 
ponds to a case where the hydraulic diameter 
of the first cell d1 is the same as the hydraulic 
diameter of the cell within the bundle di, i.e. 

where 
d, =di 

d 
1 

= 4s(s + Si) - 2n 

?c+s ’ 
(33) 

di = ss” - 2. 
71 

The flow rate Gi through the non-influenced 
cell within the bundle is plotted in Fig. 5. The 
boundary condition for the surface of this cell 
takes the form of: 

aw 
---c 

3.. 0, 

where v denotes the external normal to the 
surface. Results for Gi agree with paper [2]. 

The ratio 
0 v r = GIG,, 

05t 
I 

I I I 

f 2 3 4 5 6 7 8 9 
-, -- 

FIG. 4. The dimensionless volume flow rate G, in the non- 
influenced first cell against the values of s and sr (the broken 
line sr = s corresponds to the case where the first cell is 
square, the broken line d, = d, corresponds to the case 
where the hydraulic diameter of the first cell is equal to 

that of the cell within the bundle). 

Gi 

1 
IQ I5 20 2.5 

s-- 

FIG. 5. The dimensionless volume flow rate Gi in the 
non-influenced cell within the bundle against the value 

of s. 
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has been selected as a characteristic value for dent variable is the serial number of the cell 
the mutual influence of the cells. G is the flow row. It is found that the influence on the third 
rate through the influenced cell in the bundle row is already very slight. The fourth row is 
and G, is the flow rate through the non-influenced not influenced at all in the given range of s 
cell, i.e. G,, = G1 for the first cell and Gh = Gi and 5 values. Numerical calculations for small 
for the cell within the bundle. Figure 6 and 7 values of s were carried out with J = 3 and for 
show plots of the value q against the pitch and larger s with J = 4. 

FIG. 6. Plot of q for the first cell row of the bundle against FIG. 7. Plot of 4 for the second cell row against s and 5 (the 
s and 5 (the broken line s1 = s corresponds to the case broken line s, = s corresponds to the case where the first 

where the first cell is square). cell is square). 

the ratio of hydraulic diameters It must be remarked, however, that the 

<+ 
influence exerted upon the individual cell rows 
is very small from a practical point of view, and 

I exceeds 1 per cent only for pitches of s > 2.5 
for the first and second row of cells. and < > 1.3 or t < 0.6. For illustration, the 

The resulting values of q for various values of velocity field in the first row of cells is plotted 
s and 5 are given in Figs. 8(aHe). The indepen- in Fig. 9 for s = 1.5 and s1 = 3.0. 
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@% 2 3 4 
-j - 

I 
r) 

loo 

I Y I I 

099’ 2 3 4 
-----/--- 

(c) (4 

FIG. 8. Plot of q against the serial number of the row for individual values of 5 and s: (a) s = 1.50, (b) s = 1.75, (c) s = 2.00. 
(d) s = 2.25, (e) s = 2.50. 

mf 

2 
-j- 3 

4 

(b) 

-j- 
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-j- 
(e) 

FIG. 8--rontinuutl. 

FIG. 9. The velocity field in the non-influenced 
cell row for s = 1.5. s, = 3.0. 

6. ESTIMATE OF THE PRECISION 

OF THE CALCULATION 

6.1. Influence of the number of terms in the 
expansion (7) on theflow rate 

To determine the accuracy of the solution 
depending on the number of boundary points, 
the problem was solved for the first cell for 
s = 2.5 and for various numbers N = N, = 
N, = 3, 4, 5. To these numbers of boundary 
points correspond 11, 15, 19 terms respectively 
in the expansion (7). The flow rate values 
G@‘, GC4’, G@) were then used to calculate, by 
Aitken’s method, the asymptotic values for 
N + co according to the relation 

G"" = (93' + 
(54,3 

--pi 

where 

1-p (54.3 

#j = G(i) _ GCi) 

Figure 10 represents the ratio of the flow rate x 

G(N) 
x=- 

G”” 

against r for N = 3, 4, 5. It is found, that up to 
r = 1.0 the flow rate values for N = 4 and 

0.5 06 07 08 09 to 21 12 

-J-- 

FIG. 10. Comparison of x for various numbers of 
boundary points. 
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N = 5 are very close to the estimated correct 
solution. In the interval 1.0 < 5 < 1.15 the 
precision is acceptable for the case solved 
(N = 4). 

Figure 11 gives values of q for different values 
of N. We find that for 4 < 1.15 the resulting 
values of r] for N = 4 and N = 5 are identical. 
The solution for N = 3 shows a larger deviation 

t 
r) 

I I I I I I I I 
I 

05 06 07 08 09 f0 fl 12 13 

FE. I I Comparison of tl for various numbers of boundary 
points. 

in the whole < range. The value of ~1 for < = 1.3 
and N = 5 is, contrary to the expected result, 
incorrect. This is due to the fact that we are 
evidently dealing with the problem of a correct 
representation of the number in a computer. 
In the equations for the integration constants 
the values of p,“;“-’ and p,!$’ are combined 
(see Fig. 3), their ratio being in this case about 
- lOlo, which is a value about two orders of 
magnitude higher, than the precision of repre- 
sentation of the number in the computer used 
(- 5. 10’). From this point of view, the results 
in the range of 5 > 1.15 and N = 4 may be 
considered as correct. 

6.2. Influence of the number of mesh points in 
numerical integration, on theflow rate 

As already mentioned in section 4, the integral 
(32) has been evaluated numerically for every 
case, using the trapezoidal rule. To verify the 
precision, the dependence of the flow rate on 
the number of mesh points has been determined 
for one case. The results are given in Table 1 
[n denotes the number of mesh points in every 
section (31)]. 

Tuhle 1 

11 G 

2 245814 
4 25.4111 
5 255218 
6 25.5788 
8 25.6357 

10 25.6621 
16 25.6908 
20 256974 

From the results obtained for n = 2. 4, 8, 16 
or II = 5, 10, 20 it is possible to estimate the 
asymptotic flow rate value, using Aitken’s 
method. It has been found that for the twenty 
mesh points used in our computation the error 
is less than 0.05 per cent. 

7. CONCLUSION 

The influence of the wall on laminar flow in 
a bundle of circular cylinders has been evaluated. 
It has been found that, for cases which come 
to be considered from a practical point of view. 
the mutual influence of the flow rates of the 
cells is small. The influence in the first and second 

row of cells will exceed a value of 1 per cent 
only for s > 2.5, i > 1.3 and s > 2.5, 5 < 0.6. 
The influence of the wall on the third row of 
cells is negligible. 
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RhsnmLLe travail decrit les recherches thkoretiques de 1’Bcoulement d&velop@ laminaire dans un rCseau 
carrb infmi des cylindres circulaires, ce rCseau btant limitt ti c&e par un paroi paralltle aux axes des cylin- 
dres. On a ttudie l’effet du pas du rtseau (2b) et de tcartement du paroi de la premitre ligne des cylindres 
(b,) sur 1’Ccoulement de fluide par les B16ments particulaires du rkseau. La quantiti b Btait var& dans une 
gamme de 1,5 R & 2,5 R (R est le radius du cylindre) et I’tcartement du paroi ttait variC de b, = b (le premier 
Cltment est carrC) aux telles valeurs de b, que le rapport des diamttres hydrauliques du premier iliments 
et de I’ttCment g I’inttrieur du rtseau (4 = d,/dJ atteignait la valeur de 1,3. Le calcul a donnC que l’effet 
mutuel des Ccoulements dans les ilCments particuliers est tres faible. Les variations de I’bcoulement des 
premiers deux iignes d’kltments n’atteignent la valeur de 1 y0 que pour les pas relativement importants 
(b > 2.5R) et pour les cas quand le premier tlCment diff&re consid&ablement de I’ClCment g l’inttrieur du 
rCseau (5 > 1,3 et 5 < 0,6). L’ettet de la troisieme lignes des &ments est negligible dans la gamme des 

paramttres Ctudi&s. 

Zusammenfassq-Die Arbeit beschreibt eine theoretische Untersuchung der ausgebildeten, laminaren 
LLngsstrijmung urn Kreiszylinder in einer unendlichen Rechteckanordunung. Die Anordnung wird auf 
einer Seite von einer zu den Zylinderachsen parallelen Wand begrenzt. Der Einfluss der Anordnungsteilung 
(2b) und der Abstand der Wand von der ersten Zylinderreihe (b,) auf die Str6mungsgeschwindigkeit des 
Mediums in den einzelen Zellen der Anordnung wird untersucht und die gegenseitige Beeinflussung der 
Geschwindigkeiten in den Einzetzellen ermittelt. Die Griisse b wirde im Bereich von 1,5 R bis 2,5 R (R ist 
der Zylinderradius) verlndert und der Wandabstand von b, = b (die erste Zelle ist quadratisch) bis auf 
solche Werte von bI variiert, fiir die das Verhlltnis des hydraulischen Durchmessers der ersten Zelle zu 
dem einer Zelle innerhalb des Gitters (t = d,/‘dJ den Wert 1,3 erreicht. Aus der Berechnung folgt, dass der 
gegenseitige Einfluss der einzelen Zellen aufeinander relativ gering ist. Geschwindigkeitsiinderungen in 
den ersten beiden Reihen erreichen einen Wert von 1% nur bei verhtiltnismlssig grossen Teilungen (b > 
2,5 R) und bei grossen Unterschieden zwischen dem hydraulischen Durchmesser der ersten Zelle und jenem 
der Zellen im Gitter (5 > I,3 und r < 0,6). Der Einfluss der dritten Reihe ist vernachlgssigbar im Bereich 

der betrachteten Parameter. 

AHHoTaqau- R CTaTbe OIlHCbIBaeT('H TCO~eTllYe~'liOP II~'I'.1e,7011~111~1e IlpOJO.lblIO~o pLi:lullTorO 

JlaMIiHapHOrO TeYeHkiH B 6ecKoKesHofi KRa)qlaTHOfi peIlIeTKe Kp'$rOBbIX ~HJIliH~pOB, Orpa- 

HliYeHHOfi C OJJHOti CTOpoHblCTeHKOti,IIapaJIJIeJIbliOii OC~hl~~~.?I~I~~pOB.~CC~e~~eTCRB~llRHLle 

paCCTOHHllH MUfof(J'OCHMII ~HJI~IH~~OB (2b)It paCCTORHHFI OT CTeHKM A0 IIepBOrO pfIRaUHs7IHH- 

APOB (bl)wa CKopoCTb TeYeHIIR CpeZbI Yepe3 OTJeZbHbIe 3=IeMeIITbI peUIeTKIl,a TaKHZB3aMM- 

HOe BJIllFIHWe CKOpOCTefi TFD.?Hblfl R 3ZIeMeHTHX PeIIIeTKll. ~e.JHYHHa b Il3MeHRZaCb OT 1,5 R 
no 2,5 R jrne R-pasiryc q~narl~pa/, a paccToHKIre OT CTeItKn OT bl = b/ nepsafl HYeiiKa- 

KBaJ(paT/ A0 TaKklX 3HaYeHHti 61, KOrAa OTHOIIIeHHe IW~paB.?llYeCKHX AMaMeTpOB IIepBOti 

RYetiKIl H RYetiKH BHj'Tpn PelueTKIl if = dl/di/ AOCTHraJIO 1,3. PaCYeTbI IlOKa3bIBaH)T, YTO 
B3allMHOeBJIHFIHBe OTAeJlbHbIX RYeeKAOBOJIbHO He3HaYMTWIbHO.%klMeHeHMRCKopOCTHJ(O 1% 

BnepBMX~B~XpR~aXHa6~Io~a~OCbTO~bKOnp~loTHoC~TeJIbHO6oJIbuIAxpaCCTO~HHRXM~H(~~ 

OCFIMU I(HJIHHApoB lb > 2,5 RI, a TaKWe B CJIYYaHX 3HaYHTWIbHOti pa3HOCTII IWApaBJIH- 

YecKklx AHaMeTpoB q~n~~~po~nep~oro pHaan~~y~pM peureTKn/t > 1,3u 5< O,S/. Bnccne- 
AyeMoM AHanasoHe napaMeTpoB B.wiffHMeM TpeTbero pRxa ~anw~po~ ~omfio npeHe6peYb. 


