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Abstract—The paper describes a theoretical investigation of longitudinal, developed laminar flow in an
infinite square array of circular cylinders, the array being bounded on one side by a wall, parallel to the
cylinder axes. The influence of the array pitch (2b) and the distance of the wall from the first row of cylinders
(b,) on the flow rate of the medium through the individual cells of the array is studied and the mutual
influence of the flow rate in individual cells one upon the others is investigated. The quantity b has been
varied in the range from 15 R to 25 R (R being the cylinder radius) and the distance from the wall has been
varied from b, = b (the first cell being square) to such values of b,, where the ratio of hydraulic diameters
of the first cell and a cell within the lattice (¢ = d,,d,) reaches a value of 1-3. From the calculation it follows
that the mutual influence of the individual cells is relatively small. Variations of the flow rate in the first
two rows of cells reach a value of 1 per cent only for relatively large pitches (b > 2:5 R) and for cases,
where the first cell differs greatly in the hydraulic diameter from the cells inside the array (¢ > 1-3 and
¢ < 0-6). The influence of the third row of cells is negligible in the range of parameters considered.
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NOMENCLATURE

radius vector [m];

azimuth angle [rad];

cylinder radius [m];
dimensionless radius vector, p =
r/R;

array pitch [m];

dimensionless array pitch,s = b/R;
distance of the wall from the first
row of cells [m];

dimensionless distance of the wall
from the first row of cells, s, =
by/R;

dimensionless hydraulic diameter
of a cell within the array according
to relation (34);

dimensionless hydraulic diameter
of the first cell according to rela-
tion (33);

velocity of the liquid [m/s];
dimensionless velocity according
to relation (2);

dimensionless volume flow rate
according to relation (30);

ratio of hydraulic diameters, ¢ =
di/d;;
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#, ratio of dimensionless volume flow
rates, n = G/G, ory = G/G;;

J, total number of considered cells;

Js number of the cell.

1. INTRODUCTION

IN THERMAL calculations of heat exchangers and
in some types of nuclear reactor fuel elements
we find the problem of determining the flow
rate of the medium for the case of longitudinal
flow in a bundle of tubes (or rods).

In actual calculations, the procedure gener-
ally applied is to divide the bundle into a
number of “cells” more or less by estimation
(see Fig. 1, the shaded area). The cell thus
selected is considered to be ‘‘isolated” from
the other cells, i.c. we assume that the flow of
the medium through this cell is not influenced
by the neighbouring cells. Based on the hydraulic
diameter of this cell, and on other quantities
(pressure gradients, etc.) the flow rate of the
medium through the cell considered is calculated.
In the case of a regular and infinite array, the
procedure described above is certainly correct.
If, however, the bundle is limited by a fixed wall,
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(b)

Fi1G. 1. Scheme of a heat exchanger or fuel
element.

such a method may be assumed to be only an
approximation.

The object of this paper is to determine the
number of cell rows which will be influenced
by the wall, from the point of view of the flow
rate of the medium through these cells. To
illustrate the influence of the wall on flow in the
rod bundle, the laminar flow of a liquid through
a bundle of rods is solved in this paper in the
“semi-infinite geometry™, limited by a fixed
wall. The rods are arranged in a square array
with constant pitch.

2. BOUNDARY CONDITIONS

To solve the problem, we divide the cross-
section of the bundle into elementary cells
(Fig. 2). In the case given, where we shall have
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F1G. 2. Schematic illustration of the problem studied.

regard to the mutual influence of the cells, it is
virtually immaterial how we select the cells.
A typical cell is shown in Fig. 3.

We shall proceed to solve the problem by
determining an expression for the velocity
field in the vicinity of every circular cylinder (i.e.
in every cell), and using boundary conditions
for the boundary of individual cells we shall
match (sew together) these partial velocity
fields.

Since the array is semi-infinite, the solution is
symmetrical with respect to x-axis (see Fig. 2).
[t is therefore sufficient to investigate one row
of cells, shown in Fig. 2 by the shaded area.
Because in the calculation we can only consider
a finite number of cells, we shall limit the last
cell by the boundary condition in the form of
(‘?W:/ﬁx|x=h =

We are therefore going to study the problem
as it is shown in Fig. 1(b). We shall gradually
increase the number of cells, until the results
for the first cells vary no more.

The longitudinal laminar flow parallel to
the z-axis is described by a partial differential
equation in the form of*

) dp
pwvow, = Fi (1
where p is the dynamic viscosity and dp/d:

* In the given example. two Navier-Stokes equations are
eliminated (w, = 0, w, = 0) and the third is reduced to the
Poisson equation.
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the pressure gradient. By means of the substitu-

tion
d
W= w, (-1—"

2—-1 r
== (2
#dZR) p=x @

we transform equation (1) into the dimensionless
form

VW = — 1. (3)
In our case equation (3) has the form
2 2W
W LW LW,
op* pdp p° 09

The solution of this partial differential equation
takes the form

e

W =Ao+ Bolnp — (p*/4) + Y [(4.0"

1

]

+ B,p~ " cos ng + (C,p" + D,p” " sinng].
&)

Since the problem is symmetrical with respect
to the x-axis, the part of the solution which
contains the sin ng functions is eliminated.

N, doundary points

Nt

v N, boundery points
Mzﬂ}m 1

3R

|
|
|

g s

F16. 3. Notation of the cell dimensions and location of
boundary points.

One half of the remaining integration constants
may be eliminated due to the boundary condi-
tion for the radius r = R, ie. p = 1, where the
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relation holds:
W(l,¢)=0. (6)

Based on the series (5) we obtain the following
relations for the integration constants:

A0=
A,=—B, (n=1,23..).

B

Therefore, the expression for the dimensionless
velocity will take the form

Wip,9) =1 — p?) + Bolnp
+ Zl B,(p" — p~")cos ng. Ul

2.1. Boundary conditions for the cell

In the given case, where the solution of
equation (3) is described in polar coordinates
P, @, the boundary condition of the form (6)
is satisfied exactly along the whole circumference
of the circle p = 1. The situation is somewhat
different on the boundary of a cell of rectangular
or square shape. Papers [1, 2] point out that
the boundary conditions on the cell surface
cannot be satisfied precisely for the case of a
finite number of terms of the expansion. It
can, however, be required that the boundary
conditions be satisfied in selected points of the
cell boundary.

The dimensions of a cell and the distribution
of boundary points along the circumference is
shown in Fig. 3. For the dimension 3, the rela-
tion holds:

§=3s, for the first cell

§=3 for the other cells of the bundle.

In the interval 0 < y < s we locate N, points
distributed regularly, and in the interval — 5 <
x <0 and 0 € x < s we locate N, points, Let
us give the boundary conditions for typical
cells, and determine the dependence between
the selected number of points N, and N, and
the number of terms of the expansion N; (7).
On the boundary x = + s of the individual
cells, the condition of continuity of the velocity
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W and the velocity gradient must be satisfied. ie.

Wilses = Wisileooy  forthepoints 1,2,.. Nyj=12,...J - 1 (8a)
aWi aWj+1 . .
ox = TAr f v = — .
ax |-, ax |, orthepoints 1,2,.. ,N,j=1,2,...,J — 1; (8b)
oW, oW,
a—yj - = _—63;1 . for the pointS 2, 39-‘., Nl - 1,] = 1,2,...,] — 1, (Sc)

where J is the total number of cells considered.

For point No. 1 the condition (8¢) is already satisfied, due to the symmetry of the solution with

respect to the x-axis.

On the boundary y = s, as a consequence of the symmetry of the solution (around the X-axis,

Fig. 2) the following boundary condition holds

a—;'% . = () for the points 1,2,...,2N, — 1,j=1,2,...,J. 9)

For the left boundary {x = — §) of the first cell,
Wile=—5=0  forpoints 1,2,.. ,N,, (10a)
%‘% x=_§= 0 for points 2,3,.. ,N, — 1. {10b)

On the right boundary (x = s) of the last cell (denoted J) it is possible, as already mentioned, to

write the condition
ow;

e =0
0X =

The total number of boundary conditions
for J cells is given by the relation

K = JBN, + 2N, — 3). (12)

Therefore, from expression (12) it follows that
in every cell we must select

terms in the expansion of form (7).

The boundary conditions for a single cell
are given by conditions (9), (10a), (10b), (11).
The total number of conditions agrees with the
given value of N,

for points 1,2,..., N,.

(11)

2.2. Expressions for the velocity W and its
derivates
The series (7) for the dimensionless velocity
may be re-written in the form

W=b+ S Ba, (14)
where "
b =1 - p?
ag=Inp (15)
a, = ¥, COSne rn=12,..,N;~ 1)
Yn=p"—p " (16)
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We obtain the expressions for the derivates
0W/0x and 0W /0y by substituting for OW/dp
and 0W/d¢ into the expressions

é’W—aWcos —1€—sin

ox  dp ¢ p ¢ e
w = aWsincp + lfjﬁﬂcosw
dy  op p O '

It can be deduced, that

3
ow z :
——=d+ Bncm (17)
O0x
n=0
Ni—1
ow z
n=0
where
d=-"2 Lpsi
———Ecosqo, g= —3zpsing,
1 1.
Co = —COS @, Jo = —sin @,
p p
¢, = ®,cos @ + f,sin @
. }n=1,2,...,N3_1,
fi=0a,sin@ — B,cos
(19)
M; = aly, ayy, @ig... Gy ]
dy0, 431, G22,-.-., Qag

an,0 ANy1> GNy25 - - ONE

Cioo €115 C125--

C20o C215 €225+

LCN,00 CNy1s CNy2o e e
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and where

Y,

&, =

cos ne,

Yy .
B, = —"sin ne,
P

Yo=p"+p7"
Xn=p"—p "
2.3. The final notation of the boundary conditions
It has been found by analysis of the boundary
conditions and evaluation of the partial numeri-
cal results, that the boundary conditions (8c),
(10b) in the form of

ow

_ =
ay xts

for the points 2,3,...,N, — 1

have little influence on the solution. They have
therefore been left out of the calculation. For
the total number of terms of the expansion (7)
we obtain the expression:
N3 =2N; + N,) -1 (20)
For the sake of clarity and the possibility of
easier programming for a digital computer
we now rewrite the boundary conditions in
the matrix form.
We introduce the matrixes M; and M, ; and
vectors B;, C; and C;, , in the form of

pre— -—'_ .+1)
Mj+1 = a(ljo » 811, A125--+ 1k (21)
Az0, Q215 Q225--- Q2
ayn.0> AN 1>AN2s -5 AN K
Cios C1try €125+ Ci1g
C20, €215 C225--+ C2k
L. CNy0» CN;15 CNy25-- 5 CNyE ]
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B; = [ By, G = b¢], Cj+1 =[by*V7]. (22)
B, b, b,
B, I :
| b, by,
d d
d, d;
B, dy,. Ldy, |

where K = N, — 1. Indexesjandj + 1 in the matrixes and vectors have been left out for simplicity.
Now we are able to write the conditions on the boundary of two cells in a simple matrix form

The boundary conditions (9), (10a) and (11) we write in similar form
Nl Bl + Fl = 0, (25)
NJ BJ + FJ = 0, (26)
where
A;= f(lj())’ Jivsos fik'} N, = a(ll(}, Ay1y-- g > (27)
fa00 f215-- 5 Jak Q305 A315--- Q2g
froo fris--o ik aN,0> ANy1> - -5 ANy
N; = C(JJ())’ Ci15-- C1g | Dj= g(1j) > F, = b(xl) » F, = d(i“ 8 (28)
€200 C210-00 C2g g2 b, d,
Cny0s CNy1s - -5 ONyE gLJ b;v, le

and where L = 2N, — 1.

3. SOLUTION OF THE BOUNDARY PROBLEM

The system of equations, describing the boundary conditions for J cells may be written summarily
thus:

MB = F, (29)
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where
B=[B,], M=[N, \ F=[-F, R

MJ—I,MJ CJ_C.I—I
A, -D,
N, | —F,

By solving the system of equations, represented by equation (29) we obtain directly all the integration
constants.

4. DETERMINATION OF THE FLOW RATE THROUGH A CELL

Based on the known integration constants we are able to determine the velocity field in a cell by
means of equation (7). The volume flow rate of the medium through a cell is given by the integral
(see Fig. 3)

np
G=2 (I) { W(p, p) p dp de, (30)
where
s
for0 < ¢ < n/4;
[ g OO O < (31a)
s
f 4 < ;
) o orn/4 < ¢ < w/2 (31b)
p = J s
— i < 5/s;
o orn/2 < ¢ < m/2 + arctan §/s (31c¢)
S
- for /2 3 <
o5 0 orn/2 + arctan§/s < @ < @ (31d)

The integration with respect to the variable p Ay(p) = :p*(2Inp — 1)
may be carried out analytically. For the volume o 1/s3 =
flow rate we obtain a simple integral in the form AP =30"—p+2)

m o Ny-1 A)p)=14Gp* —Inp— 1)
G =2([Ap) + Zo B, A(p) cos np] do, (32) Pl iy
" An(ﬁ) = -
where n4+?2 —n4+2
Ayp) = 15 (20* — p*) (n=3,4,..,N;— 1)

30
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The integral (31) has been evaluated numerically
by the trapezoidal rule.

5. RESULTS OF THE CALCULATION

The dimensionless pitch selected for this
calculation was in the range of s= 150,
1-75, 2-00, 2-25, 2-50. Lower values of s were not
considered, since for s = 1-5 the influence of
the wall on the second cell row is already
negligible. Values larger than s =25 will
hardly occur in practice. The wall distance has
been varied from s, = s (the first cell is square)
to a value corresponding to the 13 times of the
hydraulic diameter of the cell in the bundle.

The calculation has been carried out for
thirteen boundary points (N, = N, = 4). Then
according to (20) we obtain for a number of
terms in the expansion N a value of 15. In the
numerical integration of expression (32) twenty
mesh points have been selected in the individual
sections (31).

Figures 4 and 5 show the volume flow rates
in non-influenced cells. Figure 4 illustrates the
flow rate G, through the first cell as a function
of the dimensionless pitch and the distance of
the fixed wall from the axes of the first row of
cylinders s;. In the figure a line is also plotted,
corresponding to the case where the first cell
is square (s, = s), and the line, which corres-
ponds to a case where the hydraulic diameter
of the first cell d, is the same as the hydraulic
diameter of the cell within the bundle 4, i.e.

d, =d,
where
d, = w (33)
n+s
2
=% (34)
s

The flow rate G; through the non-influenced
cell within the bundle is plotted in Fig. 5. The
boundary condition for the surface of this cell
takes the form of:

ow
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F1G. 4. The dimensionless volume flow rate G, in the non-

influenced first cell against the values of s and s, (the broken

line s, = s corresponds to the case where the first cell is

square, the broken line d, = d, corresponds to the case

where the hydraulic diameter of the first cell is equal to
that of the cell within the bundle).

N

N ol N8

/

-~

10 15 20 25

s

FiG. 5. The dimensionless volume flow rate G; in the
non-influenced cell within the bundle against the value
of s.

where v denotes the external normal to the
surface. Results for G; agree with paper [2].

The ratio
n = G/G,
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has been selected as a characteristic value for
the mutual influence of the cells. G is the flow
rate through the influenced cell in the bundle
and G, is the flow rate through the non-influenced
cell, i.e. G, = G, for the first cell and G, = G;
for the cell within the bundle. Figure 6 and 7
show plots of the value n against the pitch and
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dent variable is the serial number of the cell
row. It is found that the influence on the third
row is already very slight. The fourth row is
not influenced at all in the given range of s
and ¢ values. Numerical calculations for small
values of s were carried out with J = 3 and for
larger s with J = 4.

\
\
\ ) /
o '\\ o5 250
225 ¢
><\ R BE NN
175 T | | 175
y \ # | 150
\
T | s
& T
. 100 / L — N
\ /‘_’_‘
N = | L1
i
f //
,///
/
]
14
09905 06 07 08 09 10 1 12 13 09%5 06 07 08 09 10 11 12 13

___f—.

F1G. 6. Plot of 5 for the first cell row of the bundle against
s and ¢ (the broken line s; = s corresponds to the case
where the first cell is square).

the ratio of hydraulic diameters

for the first and second row of cells.
The resulting values of n for various values of
s and £ are given in Figs. 8(a){(e). The indepen-

—f

F1G. 7. Plot of n for the second cell row against s and ¢ (the
broken line s; = s corresponds to the case where the first
cell is square).

It must be remarked, however, that the
influence exerted upon the individual cell rows
is very small from a practical point of view, and
exceeds 1 per cent only for pitches of s > 2-5
and & > 13 or & < (6. For illustration, the
velocity field in the first row of cells is plotted
in Fig. 9 for s = 1-5 and s, = 3-0.
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FI1G. 8. Plot of n against the serial number of the row for individual values of ¢ and s: (a) s = 1-50, (b} s = 1-75, (¢} s = 200,
(d)s = 225, (e) s = 2-50.
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S=2
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0
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(e)
FI1G. 8-—continued.

F1G. 9. The velocity field in the non-influenced
cell row for s = 15,5, = 3-0.
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6. ESTIMATE OF THE PRECISION
OF THE CALCULATION

6.1. Influence of the number of terms in the
expansion (7) on the flow rate
To determine the accuracy of the solution
depending on the number of boundary points,
the problem was solved for the first cell for
s = 25 and for various numbers N = N, =
N, =3, 4, 5. To these numbers of boundary
points correspond 11, 15, 19 terms respectively
in the expansion (7). The flow rate values
G, G, G were then used to calculate, by
Aitken’s method, the asymptotic values for
N — oo according to the relation

54,3
as 3
G* =G + — 5
1 - W
where
S = G — G,
Figure 10 represents the ratio of the flow rate x
G
X = —GE;

against £ for N = 3, 4, 5. It is found, that up to
& =10 the flow rate values for N =4 and

101 /
/

. — %
I~ /
7 /
] 7 N
X ( ™.
’ .M.l‘4 N[ '\
099 ) \
\
\
\
05 06 07 08 09 f0 #H 12

—_f_..

FiG. 10. Comparison of x for various numbers of
boundary points.
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N = 5 are very close to the estimated correct
solution. In the interval 1-0 < ¢ < 1-15 the
precision is acceptable for the case solved
(N =4)

Figure 11 gives values of n for different values
of N. We find that for £ < 1-15 the resulting
values of # for N = 4 and N = 5 are identical.
The solution for N = 3 shows a larger deviation

101 &

[~ |

4
Nt {

\

5x

AN
\‘\

.
|
05 06 07 08 09 t0 # f2 13

—f_’

Fic. 11. Comparison of # for various numbers of boundary
points.

in the whole ¢ range. The value of  for & = 13
and N = 5 is, contrary to the expected result,
incorrect. This is due to the fact that we are
evidently dealing with the problem of a correct
representation of the number in a computer.
In the equations for the integration constants
the values of p¥:~' and pY: ! are combined
(see Fig. 3), their ratio being in this case about
~ 10'°, which is a value about two orders of
magnitude higher, than the precision of repre-
sentation of the number in the computer used
{~ 5.107). From this point of view, the results
in the range of £ > 115 and N =4 may be
considered as correct.

6.2. Influence of the number of mesh points in
numerical integration, on the flow rate

As already mentioned in section 4, the integral
(32) has been evaluated numerically for every
case, using the trapezoidal rule. To verify the
precision, the dependence of the flow rate on
the number of mesh points has been determined
for one case. The results are given in Table |
[n denotes the number of mesh points in every
section (31)].

Table 1

n G

24-5874
254177
25-5218
25-5788
25-6357
10 256621
16 25-6908
20 256974

[e I = NNV N N )

From the results obtained for n = 2, 4, 8, 16
or n =15, 10, 20 it is possible to estimate the
asymptotic flow rate value, using Aitken’s
method. It has been found that for the twenty
mesh points used in our computation the error
is less than 0-05 per cent.

7. CONCLUSION

The influence of the wall on laminar flow in
a bundle of circular cylinders has been evaluated.
It has been found that, for cases which come
to be considered from a practical point of view.
the mutual influence of the flow rates of the
cells is small. The influence in the first and second
row of cells will exceed a value of 1 per cent
only for s > 25, £ > 1-3 and s > 2:5, ¢ < 0-6.
The influence of the wall on the third row of
cells is negligible.
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Résumé—Le travail décrit les recherches théoretiques de ’écoulement développé laminaire dans un réseau
carré infini des cylindres circulaires, ce résean étant limité & cOte par un paroi paralléle aux axes des cylin-
dres. On a étudié I'effet du pas du réseau (2b) et de écartement du paroi de la premiére ligne des cylindres
(by) sur I’écoulement de fluide par les éléments particulaires du réseau. La quantité b était variée dans une
gamme de 1,5 R4 2,5 R (R est le radius du cylindre) et I’écartement du paroi était varié de b, = b (le premier
¢lément est carré) aux telles valeurs de b, que le rapport des diamétres hydrauliques du premier &éléments
et de I’étément & I'intérieur du réseau (¢ = d4,/d;) atteignait la valeur de 1,3. Le calcul a donné que 1'effet
mutuel des écoulements dans les éléments particuliers est trés faible. Les variations de 1'écoulement des
premiers deux lignes d*éléments n’atteignent la valeur de 19, que pour les pas relativement importants
(b > 2,5R) et pour les cas quand le premier élément différe considérablement de 1’élément 4 'intérieur du
réseau (¢ > 13 et & < 0,6). L'ettet de la troisiéme lignes des éléments est négligible dans la gamme des
parameétres étudiés.

Zusammenfassung—Die Arbeit beschreibt eine theoretische Untersuchung der ausgebildeten, laminaren
Langsstromung um Kreiszylinder in einer unendlichen Rechteckanordunung. Die Anordnung wird auf
einer Seite von einer zu den Zylinderachsen parallelen Wand begrenzt. Der Einfluss der Anordnungsteilung
(2b) und der Abstand der Wand von der ersten Zylinderreihe (b,) auf die Stromungsgeschwindigkeit des
Mediums in den einzelen Zellen der Anordnung wird untersucht und die gegenseitige Beeinflussung der
Geschwindigkeiten in den Einzelzellen ermittelt. Die Grdsse b wirde im Bereich von 1,5 R bis 2,5 R (R ist
der Zylinderradius) verindert und der Wandabstand von b, = b (die erste Zelle ist quadratisch) bis auf
solche Werte von b, variiert, fiir die das Verhiltnis des hydraulischen Durchmessers der ersten Zelle zu
dem einer Zelle innerhalb des Gitters (¢ = d,/d;) den Wert 1,3 erreicht. Aus der Berechnung folgt, dass der
gegenseitige Einfluss der einzelen Zellen aufeinander relativ gering ist. Geschwindigkeitsinderungen in
den ersten beiden Reihen erreichen einen Wert von 1% nur bei verhiltnismissig grossen Teilungen (b >
2,5 R) und bei grossen Unterschieden zwischen dem hydraulischen Durchmesser der ersten Zelle und jenem
der Zellen im Gitter (¢ > 1,3 und ¢ < 0,6). Der Einfluss der dritten Reihe ist vernachlidssigbar im Bereich
der betrachteten Parameter.

AHHOTAUMA—DB cTaThe ONUCHBAETCH TEOPETHUELCKOE HCCILI0BANNE MPOIOALHOIO PA3BUTOrO
JAMUHAPHOrO TeYeHMA B 0ECKOHEYHON KBaJpaTHOIl pelieTHe KPYrOBHIX LHIMHIPOB, OTpa-
HUYEHHOH ¢ O4HOH CTOPOHBI CTEHKOM, MApaIeabHoil ocam umHapos, Uecaeayerca Bananue
PACCTOAHNA MY OCAMU NUIAHHAPOR (2b) It pACCTOAHNA OT CTEHKM [0 MEpPBOro pAA UHIIMH-
KpOB (b1) Ha CKOPOCTH TEYeHUA Cpejibl Yepes OTieilbHbIE DIEMEHTH PelleTKU, 4 TAKHe B3auM-
HOe BIMAHME CKOpOCTell TeueHnsa B daemMeHTax peuieTku. Beanvnna b usmensanacs or 1,5 R
mo 2,5 R /rae R—paguyc uuannipaf, a paccTofnie 0T cTeHKH OT by = b/ nepsas Auvelika—
KBafpaT/ 70 TaKUX 3HAYeHMil b1, KOrjla OTHOLIEHME THAPABIMYECKHX ANAMETPOB MepBOI
AvYelku u AYelKky BHYTpH pelwerTku [ = di/di] mocturano 1,3. PacyeTsl MOKa3HBAIOT, UYTO
B33HMHOE BIMAHUE OTIENLHEIX AUeeK J0BONLHO He3HAUMTeabHO. amenenus ckopocru 7o 1%
B IEPBBIX ABYX PAMAX HAGIIONAIOCH TOTLKO IIPH OTHOCUTELHO GOJBLINX PACCTOAHMAX MEHAY
ocamMu uuamHApos [b > 2.5 R/, a Takie B CAY4YaAX IHAUNTESbHON PABHOCTM TUAPABIH-
YeCKNX XMaMeTPOB LUMINHADPOB NepBOro pAAa n BHYTpH pemetku /£ > 1,3 u £< 0,6/, B uccre-
AYEMOM [IMATIa30He NapaMeTPOB BANAHUEM TPeThero PAAa LMIAHAPOB MOKHO NpeHeOpeys.



